Oral glycotoxins determine the effects of calorie restriction on oxidant stress, age-related diseases, and lifespan.
نویسندگان
چکیده
We previously showed that the content of advanced glycation end products (AGEs) in the diet correlates with serum AGE levels, oxidant stress (OS), organ dysfunction, and lifespan. We now show that the addition of a chemically defined AGE (methyl-glyoxal-BSA) to low-AGE mouse chow increased serum levels of AGEs and OS, demonstrating that dietary AGEs are oxidants that can induce systemic OS. OS predisposes to the development of cardiovascular and chronic kidney diseases; calorie restriction (CR) is the most studied means to decrease OS, increase longevity, and reduce OS-related organ damage in mammals. Because reduction of food intake also decreases oxidant AGE s intake, we asked whether the beneficial effects of CR in mammals are related to the restriction of oxidants or energy. Pair-fed mice were provided either a CR diet or a high-AGE CR diet in which AGEs were elevated by brief heat treatment (CR-high). Old CR-high mice developed high levels of 8-isoprostanes, AGEs, RAGE, and p66(shc), coupled with low AGER1 and GSH/GSSG levels, insulin resistance, marked myocardial and renal fibrosis, and shortened lifespan. In contrast, old CR mice had low OS, p66(shc), RAGE, and AGE levels, but high AGER1 levels, coupled with longer lifespan. Therefore, the beneficial effects of a CR diet may be partly related to reduced oxidant intake, a principal determinant of oxidant status in aging mice, rather than decreased energy intake.
منابع مشابه
Cardiovascular, Pulmonary and Renal Pathology Oral Glycotoxins Determine the Effects of Calorie Restriction on Oxidant Stress, Age-Related Diseases, and Lifespan
We previously showed that the content of advanced glycation end products (AGEs) in the diet correlates with serum AGE levels, oxidant stress (OS), organ dysfunction, and lifespan. We now show that the addition of a chemically defined AGE (methyl-glyoxalBSA) to low-AGE mouse chow increased serum levels of AGEs and OS, demonstrating that dietary AGEs are oxidants that can induce systemic OS. OS p...
متن کاملDo Ames dwarf and calorie-restricted mice share common effects on age-related pathology?
Since 1996, aging studies using several strains of long-lived mutant mice have been conducted. Among these studies, Ames dwarf mice have been extensively examined to seek clues regarding the role of the growth hormone/insulin-like growth factor-1 axis in the aging process. Interestingly, these projects demonstrate that Ames dwarf mice have physiological characteristics that are similar to those...
متن کاملCalorie Restriction Mimetics: Examples and Mode of Action
The search for Calorie Restriction Mimetics (CRM) compounds that mimic the genetic, biochemical and physical actions of calorie restriction is not a search for a ‘lazy dieters pill’. It is a quest aiming to clarify the basic mechanisms of calorie restriction and develop strategies in order to prevent, treat or alleviate age-related conditions. The development of CRM will add new and important a...
متن کاملEffects of calorie restriction on the lifespan and healthspan of POLG mitochondrial mutator mice
Mitochondrial DNA (mtDNA) mutations are thought to have a causative role in age-related pathologies. We have shown previously that mitochondrial mutator mice (PolgD257A/D257A), harboring a proofreading-deficient version of the mtDNA polymerase gamma (POLG), accumulate mtDNA mutations in multiple tissues and display several features of accelerated aging. Calorie restriction (CR) is known to dela...
متن کاملLifespan extension by calorie restriction relies on the Sty1 MAP kinase stress pathway.
Either calorie restriction, loss-of-function of the nutrient-dependent PKA or TOR/SCH9 pathways, or activation of stress defences improves longevity in different eukaryotes. However, the molecular links between glucose depletion, nutrient-dependent pathways and stress responses are unknown. Here, we show that either calorie restriction or inactivation of nutrient-dependent pathways induces life...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The American journal of pathology
دوره 173 2 شماره
صفحات -
تاریخ انتشار 2008